Griffin Hosseinzadeh griffin-h.github.io
Education
  • University of California, Santa Barbara September 2013–June 2018
  • Ph.D. Physics, Astrophysics Emphasis
  • M.A. Physics, Astrophysics Emphasis
  • Thesis: Probing Late-Stage Stellar Evolution Through Robotic Follow-Up of Nearby Supernovae
  • University of California, Berkeley August 2008–May 2012
  • B.A. Physics, Music Minor
  • High Distinction in General Scholarship
Research
  • Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA September 2018–present
  • Postdoctoral Researcher
  • Time-Domain Research Group
  • Advisor: Edo Berger
  • Las Cumbres Observatory, Goleta, CA, USA January 2014–June 2018
  • Graduate Student Researcher
  • Global Supernova Project
  • Advisor: D. Andrew Howell
  • Planet Labs, San Francisco, CA, USA November 2012–June 2013
  • Spacecraft Engineer
  • Optical Systems/Instrumentation
  • Supervisor: William Marshall
  • Frascati National Laboratories, Frascati, Italy August–October 2012
  • DOE–INFN Summer Exchange Student
  • MoonLIGHT–ILN Experiment
  • Advisor: Simone Dell'Agnello
  • University of California, Berkeley, CA, USA May–July 2012
  • Emilio G. Segrè Intern
  • Physics 111 Advanced Laboratory
  • Advisor: Hartmut Häffner
  • Lawrence Berkeley National Laboratory, Berkeley, CA, USA May 2010–August 2011
  • Undergraduate Researcher
  • Daya Bay Reactor Neutrino Experiment
  • Advisor: Kam-Biu Luk
Other Training
  • LSSTC Data Science Fellow September 2017–June 2019
  • Two-year training program for dealing with big data in astronomy
  • Certificate in College and University Teaching, UC Santa Barbara June 2018
  • Certificate program in pedagogy at the post-secondary level
  • AAS Astronomy Ambassador January 2018
  • Professional development workshop for effective communication with the public
Teaching
  • Santa Barbara City College, Santa Barbara, CA, USA August 2014–May 2018
  • Adjunct Instructor
  • Department of Earth and Planetary Science
  • ERTH 102 – Observational Astronomy Lab
  • University of California, Santa Barbara, CA, USA September 2013–June 2014
  • Teaching Assistant
  • Department of Physics
  • Astro 1 – Basic Astronomy
  • Astro 2 – History of the Universe
  • University of California, Berkeley, CA, USA June–August 2010 & 2011
  • Graduate Student Instructor
  • Department of Physics
  • Physics 8A & 8B – Introductory Physics
Mentoring
  • Brian Hsu, Harvard University June 2020–present
  • Harvard College Research Program & Junior Thesis
  • “Unveiling the Power Source of Superluminous Supernovae”
  • Frederick Dauphin, Carnegie Mellon University June–August 2019
  • Smithsonian Astrophysical Observatory Research Experience for Undergraduates
  • “Selecting Superluminous Supernovae from Transient Surveys with Machine Learning”
  • David Guevel, UC Santa Barbara June–August 2016
  • Worster Fellowship
  • “Optical Follow-Up of Gravitational Waves”
  • Pioneers in Engineering, UC Berkeley February–April 2011 & 2012
  • Robotics competition for Bay Area high school students
Observing Programs (PI)
  • Hubble Space Telescope
  • GO-15236: “The mystery of a supposed massive star exploding in a brightest cluster galaxy,” 5 orbits, $45,768
  • Gemini Observatory
  • GN-2018B-FT-111: “Towards a Sample of Superluminous Supernovae in the Nebular Phase,” 5.8 hours
  • Las Campanas Observatory
  • 2019A–2020A: “Magellan Follow-up of Gravitational Wave Events,” 7 nights
  • MMT Observatory
  • 2019A–2020A: “MMT Follow-up of Gravitational Wave Events,” 10.5 nights
  • Southern Astrophysical Research Telescope
  • 2019B–2020A: “A consortium-wide program for gravitational wave follow-up with SOAR,” 90 hours (shared)
  • F. L. Whipple Observatory
  • 2019A–2020A: “Keplercam Follow-up of Gravitational Wave Events,” 7 nights
  • 2020B–2020C: “Monitoring a Supermassive Black Hole Binary Candidate,” 2 nights
  • Las Cumbres Observatory
  • DDT2020A-006: “Monitoring for a Repeated Lensing Flare from a Supermassive Black Hole Binary Candidate,” 9 hours
  • LCO2021A-010: “Continued Monitoring of Spikey: a Flaring AGN and Supermassive Black Hole Binary Candidate,” 8 hours
Service
  • HST Time Allocation Panelist, Cycles 27–28 June 2019–present
  • Review observing proposals and make recommendations to the Time Allocation Committee
  • CfA Stars & Planets Seminar Committee June 2019–present
  • Solicit recommendations/self-nominations, select, and invite seminar speakers
  • Peer Reviewer: ApJ, MNRAS May 2018–present
  • Review manuscripts of journal articles and recommend revision or publication
  • Santa Barbara Astro Lunch January 2017–June 2018
  • Organizer of weekly lunch talks by Santa Barbara locals and visitors
Outreach
  • Astronomy on Tap Boston April 2019–present
  • Free, public astronomy presentations in the greater Boston area
  • Astronomy on Tap Santa Barbara March 2016–June 2018
  • Free, public astronomy presentations in a bar in downtown Santa Barbara
  • UCSB Physics Circus September 2013–June 2018
  • Interactive physics demonstrations for local elementary and middle schools
Presentations
Invited Talks
  1. BigBoom Group Meeting, University of Arizona, February 2021
  2. Lunch Talk, Carnegie Observatories, January 2021
  3. Cosmology Seminar, University of California, Davis, October 2020
  4. Astronomy Seminar, Michigan State University, October 2020
  5. Supernova Workshop, Southern Horizons in Time-Domain Astronomy (IAU Symposium 339), November 2017
Contributed Talks
  1. Hot-wiring the Transient Universe VI, Evanston, IL, USA, August 2019
  2. 231st AAS Meeting, Oxon Hill, MD, USA, January 2018
  3. Southern Horizons in Time-Domain Astronomy (IAU Symposium 339), Stellenbosch, Western Cape, South Africa, November 2017
  4. Generation-GW: Diving into Gravitational Waves, St. Thomas, VI, USA, June 2017
  5. 229th AAS Meeting, Grapevine, TX, USA, January 2017
  6. Supernovae Through the Ages, Hanga Roa, Easter Island, Chile, August 2016
  7. 227th AAS Meeting, Kissimmee, FL, USA, January 2016
  8. Hot-wiring the Transient Universe IV, Santa Barbara, CA, USA, May 2015
Posters
  1. Enabling Multi-Messenger Astrophysics Workshop, Baltimore, MD, USA, April 2019
  2. STScI Spring Symposium, Baltimore, MD, USA, April 2019
  3. 225th AAS Meeting, Seattle, WA, USA, January 2015
Software
  • Light Curve Fitting, Author 1 of 1 DOIdoi:10.5281/zenodo.2639463
  • Tools to fit analytical models to light curves of astronomical transients
Publications
First Author
  1. G. Hosseinzadeh et al. 2020, “Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot,” ApJ, 905, 93
  2. G. Hosseinzadeh et al. 2019, “Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR,” ApJL, 880, L4
  3. G. Hosseinzadeh et al. 2019, “Type Ibn Supernovae May not all Come from Massive Stars,” ApJL, 871, L9
  4. G. Hosseinzadeh et al. 2018, “Short-lived Circumstellar Interaction in the Low-luminosity Type IIP SN 2016bkv,” ApJ, 861, 63
  5. G. Hosseinzadeh et al. 2017, “Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor,” ApJL, 845, L11
  6. G. Hosseinzadeh et al. 2017, “Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light,” ApJ, 836, 158
Major Contribution
  1. B. Hsu, G. Hosseinzadeh, & E. Berger 2021, “Magnetar Models of Superluminous Supernovae from the Dark Energy Survey: Exploring Redshift Evolution,” arXiv:2104.09639
  2. V. A. Villar, G. Hosseinzadeh, et al. 2020, “SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae,” ApJ, 905, 94
  3. S. Gomez, G. Hosseinzadeh, et al. 2019, “A Galaxy-targeted Search for the Optical Counterpart of the Candidate NS-BH Merger S190814bv with Magellan,” ApJL, 884, L55
  4. I. Arcavi, G. Hosseinzadeh, et al. 2017, “Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger,” Natur, 551, 64
  5. I. Arcavi, C. McCully, G. Hosseinzadeh, et al. 2017, “Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory,” ApJL, 848, L33
  6. I. Arcavi, G. Hosseinzadeh, et al. 2017, “Constraints on the Progenitor of SN 2016gkg from Its Shock-cooling Light Curve,” ApJL, 837, L2
Collaboration
  1. A. Hajela et al. 2021, “The emergence of a new source of X-rays from the binary neutron star merger GW170817,” arXiv:2104.02070
  2. A. Fiore et al. 2021, “SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail,” MNRAS, 502, 2120
  3. D. Xiang et al. 2021, “The Peculiar Transient AT2018cow: A Possible Origin of a Type Ibn/IIn Supernova,” ApJ, 910, 42
  4. V. A. Villar et al. 2021, “A Deep Learning Approach for Active Anomaly Detection of Extragalactic Transients,” arXiv:2103.12102
  5. X. Zeng et al. 2021, “SN 2017hpa: A Nearby Carbon-rich Type Ia Supernova with a Large Velocity Gradient,” ApJ, 909, 176
  6. M. Singh et al. 2021, “The Fast-evolving Type Ib Supernova SN 2015dj in NGC 7371,” ApJ, 909, 100
  7. S. Gomez et al. 2021, “The Luminous and Double-Peaked Type Ic Supernova 2019stc: Evidence for Multiple Energy Sources,” arXiv:2103.02611
  8. W. V. Jacobson-Galán et al. 2021, “Late-time Observations of Calcium-rich Transient SN 2019ehk Reveal a Pure Radioactive Decay Power Source,” ApJL, 908, L32
  9. S. J. Brennan et al. 2021, “An impostor among us I: Photometric and spectroscopic evolution of AT 2016jbu,” arXiv:2102.09572
  10. S. J. Brennan et al. 2021, “An impostor among us II: Progenitor, environment, and modelling of AT 2016jbu,” arXiv:2102.09576
  11. L. Tartaglia et al. 2021, “The Early Discovery of SN 2017ahn: Signatures of Persistent Interaction in a Fast-declining Type II Supernova,” ApJ, 907, 52
  12. S. Gomez et al. 2020, “FLEET: A Redshift-agnostic Machine Learning Pipeline to Rapidly Identify Hydrogen-poor Superluminous Supernovae,” ApJ, 904, 74
  13. D. Hiramatsu et al. 2020, “The electron-capture origin of supernova 2018zd,” arXiv:2011.02176
  14. C. P. Gutiérrez et al. 2020, “SN 2017ivv: two years of evolution of a transitional Type II supernova,” MNRAS, 499, 974
  15. M. Nicholl et al. 2020, “An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz,” MNRAS, 499, 482
  16. P. Short et al. 2020, “The tidal disruption event AT 2018hyz - I. Double-peaked emission lines and a flat Balmer decrement,” MNRAS, 498, 4119
  17. C. Bilinski et al. 2020, “SN 2014ab: an aspherical Type IIn supernova with low polarization,” MNRAS, 498, 3835
  18. D. Hiramatsu et al. 2020, “Luminous Type II Short-Plateau Supernovae 2006Y, 2006ai, and 2016egz: A Transitional Class from Stripped Massive Red Supergiants,” arXiv:2010.15566
  19. Y. Yang et al. 2020, “The Young and Nearby Normal Type Ia Supernova 2018gv: UV-optical Observations and the Earliest Spectropolarimetry,” ApJ, 902, 46
  20. T. Eftekhari et al. 2020, “Late-Time Radio and Millimeter Observations of Superluminous Supernovae and Long Gamma Ray Bursts: Implications for Obscured Star Formation, Central Engines, and Fast Radio Bursts,” arXiv:2010.06612
  21. S. Gomez et al. 2020, “The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star,” MNRAS, 497, 1925
  22. T. E. Müller-Bravo et al. 2020, “The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio,” MNRAS, 497, 361
  23. S. Schulze et al. 2020, “The Palomar Transient Factory Core-Collapse Supernova Host-Galaxy Sample. I. Host-Galaxy Distribution Functions and Environment-Dependence of CCSNe,” arXiv:2008.05988
  24. W. V. Jacobson-Galán et al. 2020, “SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features,” ApJ, 898, 166
  25. K. A. Bostroem et al. 2020, “Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068,” ApJ, 895, 31
  26. X. Han et al. 2020, “SN 2017cfd: A Normal Type Ia Supernova Discovered Very Young,” ApJ, 892, 142
  27. T. M. Reynolds et al. 2020, “SN 2016gsd: an unusually luminous and linear Type II supernova with high velocities,” MNRAS, 493, 1761
  28. L. Tartaglia et al. 2020, “The long-lived Type IIn SN 2015da: Infrared echoes and strong interaction within an extended massive shell,” A&A, 635, A39
  29. A. Gangopadhyay et al. 2020, “Flash Ionization Signatures in the Type Ibn Supernova SN 2019uo,” ApJ, 889, 170
  30. Y. Dong et al. 2020, “Supernova 2018cuf: A Type IIP Supernova with a Slow Fall from Plateau,” ApJ, 906, 56
  31. R. Dastidar et al. 2019, “SN 2015an: a normal luminosity type II supernova with low expansion velocity at early phases,” MNRAS, 490, 1605
  32. A. Hajela et al. 2019, “Two Years of Nonthermal Emission from the Binary Neutron Star Merger GW170817: Rapid Fading of the Jet Afterglow and First Constraints on the Kilonova Fastest Ejecta,” ApJL, 886, L17
  33. J. E. Andrews et al. 2019, “SN 2017gmr: An Energetic Type II-P Supernova with Asymmetries,” ApJ, 885, 43
  34. L. Galbany et al. 2019, “Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type Ia supernova 2016hnk,” A&A, 630, A76
  35. B. Trakhtenbrot et al. 2019, “1ES 1927+654: An AGN Caught Changing Look on a Timescale of Months,” ApJ, 883, 94
  36. S. Gomez et al. 2019, “SN 2016iet: The Pulsational or Pair Instability Explosion of a Low-metallicity Massive CO Core Embedded in a Dense Hydrogen-poor Circumstellar Medium,” ApJ, 881, 87
  37. A. Pastorello et al. 2019, “A luminous stellar outburst during a long-lasting eruptive phase first, and then SN IIn 2018cnf,” A&A, 628, A93
  38. P. J. Brown et al. 2019, “Red and Reddened: Ultraviolet through Near-infrared Observations of Type Ia Supernova 2017erp,” ApJ, 877, 152
  39. K. A. Bostroem et al. 2019, “Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz,” MNRAS, 485, 5120
  40. T. Szalai et al. 2019, “The Type II-P Supernova 2017eaw: From Explosion to the Nebular Phase,” ApJ, 876, 19
  41. S. J. Prentice et al. 2019, “Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?” MNRAS, 485, 1559
  42. N. Blagorodnova et al. 2019, “The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution,” ApJ, 873, 92
  43. D. Xiang et al. 2019, “Observations of SN 2017ein Reveal Shock Breakout Emission and a Massive Progenitor Star for a Type Ic Supernova,” ApJ, 871, 176
  44. B. Trakhtenbrot et al. 2019, “A new class of flares from accreting supermassive black holes,” NatAs, 3, 242
  45. F. Taddia et al. 2019, “Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory,” A&A, 621, A71
  46. G. Dimitriadis et al. 2019, “K2 Observations of SN 2018oh Reveal a Two-component Rising Light Curve for a Type Ia Supernova,” ApJL, 870, L1
  47. W. Li et al. 2019, “Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations,” ApJ, 870, 12
  48. J. Sollerman et al. 2019, “Late-time observations of the extraordinary Type II supernova iPTF14hls,” A&A, 621, A30
  49. J. P. Anderson et al. 2018, “A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features,” A&A, 620, A67
  50. Y.‑Z. Cai et al. 2018, “AT 2017be - a new member of the class of intermediate-luminosity red transients,” MNRAS, 480, 3424
  51. C. Fremling et al. 2018, “Oxygen and helium in stripped-envelope supernovae,” A&A, 618, A37
  52. Astropy Collaboration 2018, “The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package,” AJ, 156, 123
  53. R. Dastidar et al. 2018, “SN 2015ba: a Type IIP supernova with a long plateau,” MNRAS, 479, 2421
  54. C. P. Gutiérrez et al. 2018, “Type II supernovae in low-luminosity host galaxies,” MNRAS, 479, 3232
  55. D. J. Sand et al. 2018, “Nebular Spectroscopy of the “Blue Bump” Type Ia Supernova 2017cbv,” ApJ, 863, 24
  56. L. Li et al. 2018, “Optical observations of the 2002cx-like supernova 2014ek and characterizations of SNe Iax,” MNRAS, 478, 4575
  57. S. J. Prentice et al. 2018, “SN 2016coi/ASASSN-16fp: an example of residual helium in a typeIc supernova?” MNRAS, 478, 4162
  58. K. Maguire et al. 2018, “Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties,” MNRAS, 477, 3567
  59. J. P. Anderson et al. 2018, “The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor,” NatAs, 2, 574
  60. F. Huang et al. 2018, “SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant,” MNRAS, 475, 3959
  61. C. Inserra et al. 2018, “On the nature of hydrogen-rich superluminous supernovae,” MNRAS, 475, 1046
  62. L. Tartaglia et al. 2018, “The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am,” ApJ, 853, 62
  63. S. Bose et al. 2018, “Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy,” ApJ, 853, 57
  64. A. A. Miller et al. 2018, “Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing,” ApJ, 852, 100
  65. M. L. Graham et al. 2017, “Nebular-phase spectra of nearby Type Ia Supernovae,” MNRAS, 472, 3437
  66. IceCube Collaboration et al. 2017, “Multiwavelength follow-up of a rare IceCube neutrino multiplet,” A&A, 607, A115
  67. I. Arcavi et al. 2017, “Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star,” Natur, 551, 210
  68. LIGO/Virgo Collaboration et al. 2017, “A gravitational-wave standard siren measurement of the Hubble constant,” Natur, 551, 85
  69. L. Yan et al. 2017, “Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory,” ApJ, 848, 6
  70. C. Barbarino et al. 2017, “LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova,” MNRAS, 471, 2463
  71. LIGO/Virgo Collaboration et al. 2017, “Multi-messenger Observations of a Binary Neutron Star Merger,” ApJL, 848, L12
  72. C. McCully et al. 2017, “The Rapid Reddening and Featureless Optical Spectra of the Optical Counterpart of GW170817, AT 2017gfo, during the First Four Days,” ApJL, 848, L32
  73. M. L. Graham et al. 2017, “Clues to the nature of SN 2009ip - II. The continuing photometric and spectroscopic evolution to 1000 days,” MNRAS, 469, 1559
  74. N. Blagorodnova et al. 2017, “iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy,” ApJ, 844, 46
  75. W. Zheng et al. 2017, “Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj,” ApJ, 841, 64
  76. L. Tartaglia et al. 2017, “The Progenitor and Early Evolution of the Type IIb SN 2016gkg,” ApJL, 836, L12
  77. R. Cartier et al. 2017, “Early observations of the nearby Type Ia supernova SN 2015F,” MNRAS, 464, 4476
  78. G. Leloudas et al. 2016, “The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole,” NatAs, 1, 0002
  79. M. J. Darnley et al. 2016, “M31N 2008-12a - The Remarkable Recurrent Nova in M31: Panchromatic Observations of the 2015 Eruption,” ApJ, 833, 149
  80. F. Huang et al. 2016, “Optical and Ultraviolet Observations of the Very Young Type IIP SN 2014cx in NGC 337,” ApJ, 832, 139
  81. G. Terreran et al. 2016, “The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase,” MNRAS, 462, 137
  82. M. Nicholl et al. 2016, “Superluminous Supernova SN 2015bn in the Nebular Phase: Evidence for the Engine-powered Explosion of a Stripped Massive Star,” ApJL, 828, L18
  83. R. Ferretti et al. 2016, “Time-varying sodium absorption in the Type Ia supernova 2013gh,” A&A, 592, A40
  84. S. Valenti et al. 2016, “The diversity of Type II supernova versus the similarity in their progenitors,” MNRAS, 459, 3939
  85. M. Nicholl et al. 2016, “SN 2015BN: A Detailed Multi-wavelength View of a Nearby Superluminous Supernova,” ApJ, 826, 39
  86. L. Tomasella et al. 2016, “Optical and near-infrared observations of SN 2014ck: an outlier among the Type Iax supernovae,” MNRAS, 459, 1018
  87. F. Taddia et al. 2016, “Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project,” A&A, 588, A5
  88. A. Pastorello et al. 2015, “Massive stars exploding in a He-rich circumstellar medium - VII. The metamorphosis of ASASSN-15ed from a narrow line Type Ibn to a normal Type Ib Supernova,” MNRAS, 453, 3649
Plus 245 astronomical telegrams and circulars (137 as first author).