Griffin Hosseinzadeh griffin-h.github.io
Education
  • University of California, Santa Barbara Sep. 2013–Jun. 2018
  • Ph.D. Physics, Astrophysics Emphasis
  • M.A. Physics, Astrophysics Emphasis
  • Thesis: Probing Late-Stage Stellar Evolution Through Robotic Follow-Up of Nearby Supernovae
  • University of California, Berkeley Aug. 2008–May 2012
  • B.A. Physics, Music Minor
  • High Distinction in General Scholarship
Research
  • University of California, San Diego Jul. 2024–present
  • Assistant Professor
  • University of Arizona Sep. 2021–Jun. 2024
  • Postdoctoral Researcher
    • DLT40 nearby supernova survey
    • SAGUARO gravitational wave follow-up
    • 90Prime imager upgrade
  • Harvard University Sep. 2018–Aug. 2021
  • Postdoctoral Researcher
    • FLEET superluminous supernova program
    • CfA gravitational wave follow-up
    • Machine-learning-based photometric classification
  • LSSTC Data Science Fellow Sep. 2017–Jun. 2019
  • Two-year training program for handling big data in astronomy
  • Las Cumbres Observatory Jan. 2014–Jun. 2018
  • Graduate Student Researcher
    • Global Supernova Project
    • Las Cumbres gravitational wave follow-up
  • Planet Labs Nov. 2012–Jun. 2013
  • Spacecraft Engineer
    • Telescope collimation and focus
    • Camera, filters, and photometric calibration
  • Frascati National Laboratories (Italy) Aug.–Oct. 2012
  • DOE–INFN Summer Student, MoonLIGHT–ILN Experiment
    • Simulation of lunar laser ranging as a test of general relativity
  • University of California, Berkeley May–Jul. 2012
  • Emilio G. Segrè Intern, Physics 111 Instructional Lab
    • Quantum interference & entanglement experiment
  • Lawrence Berkeley National Laboratory May 2010–Aug. 2011
  • Undergraduate Researcher, Daya Bay Neutrino Experiment
    • Characterizing the liquid scintillator for a neutrino detector
Observing Programs
  • Electromagnetic Counterparts to Gravitational Wave Events Aug. 2022–Jan. 2025
  • PI of the SAGUARO gravitational-wave follow-up program in LIGO/Virgo/KAGRA O4
    • Large Binocular Telescope (2 × 8.4 m): 8 nights
    • Magellan & MMT (6.5 m): 24 nights
    • Bok, Kuiper, & Vatican Telescopes (1.5–2.3 m): 116 nights
  • Infant Supernovae with the Global Supernova Project Feb. 2022–Jan. 2024
  • PI of the US community's participation in a large, worldwide supernova collaboration
    • SOAR Telescope (4 m): 135 hours
    • Las Cumbres Observatory (1 m, 2 m): 905 hours
  • Probing the Spectroscopic Diversity of SLSNe with FLEET Aug. 2018–Jan. 2022
  • PI of two Gemini programs to obtain rare late-phase spectra of superluminous supernovae
    • Gemini Observatory: 41.5 hours
  • Monitoring for Lensing from a SMBH Binary Candidate Feb. 2020–Jan. 2022
  • PI of a two-year time-domain observing campaign outside my main field of expertise
    • Las Cumbres Observatory (1 m, 2 m): 19 hours
    • F. L. Whipple Observatory (1.2 m): 2 nights
  • CfA Follow-up of Gravitational Wave Events Feb. 2019–Jul. 2020
  • PI of the CfA-based gravitational-wave follow-up program in LIGO/Virgo O3
    • Magellan & MMT (6.5 m): 16.5 nights
    • SOAR Telescope (4 m): up to 30 hours per semester
    • F. L. Whipple Observatory (1.2 m): 9 nights
  • The Mystery of a Supposed Massive Star Exploding in a BCG Oct. 2017–Sep. 2018
  • PI (as a student) of a program to measure star formation at the site of a rare supernova
    • Hubble Space Telescope (2.4 m): 5 orbits
    • Funding: $45,768 (GO-15236)
    Plus many x-ray, ultraviolet, optical, infrared, and radio programs as a coinvestigator.
Service
  • Peer Reviewer: ApJ, MNRAS, Nature May 2018–present
  • Review manuscripts of journal articles and recommend revision or publication
  • Las Cumbres Distributed Peer Review Panelist Nov. 2023 & May 2024
  • Discussed and ranked observing proposals on the stellar physics panel
  • HST Proposal Review Panelist, Cycles 27 & 31 Jun. 2019–Aug. 2023
  • Discussed and ranked observing proposals on the stellar physics panel
  • GSP Pipeline Support Nov. 2021–Oct. 2022
  • Hold monthly Zoom office hours to train collaboration members to do photometry
  • CfA Stars & Planets Seminar Committee Jun. 2019–Aug. 2021
  • Solicited recommendations/self-nominations, selected, and invited seminar speakers
  • HST Proposal External Reviewer, Cycles 28 & 29 Mar. 2020–Jun. 2021
  • Graded regular and mid-cycle observing proposals for the stellar physics panel
  • Santa Barbara Astro Lunch Jan. 2017–Jun. 2018
  • Organized weekly lunch talks by Santa Barbara locals and visitors
Teaching
  • Certificate in College and University Teaching, UC Santa Barbara Jun. 2018
  • Certificate program in pedagogy at the post-secondary level
  • Santa Barbara City College Aug. 2014–May 2018
  • Adjunct Faculty
  • Department of Earth and Planetary Science
    • ERTH 102: Observational Astronomy Lab
  • University of California, Santa Barbara Sep. 2013–Jun. 2014
  • Teaching Assistant
  • Department of Physics
    • Astro 1: Basic Astronomy
    • Astro 2: History of the Universe
  • University of California, Berkeley Jun.–Aug. 2010 & 2011
  • Graduate Student Instructor
  • Department of Physics
    • Physics 8A: Introductory Physics (Mechanics)
    • Physics 8B: Introductory Physics (Electricity & Magnetism)
Mentoring
  • Harvard College Research Program, Harvard University Jun. 2020–Apr. 2022
  • “Unveiling the Power Source of Superluminous Supernovae”
  • Led to student's junior thesis and two refereed publications with student as first author
  • REU Program, Smithsonian Astrophysical Observatory Jun.–Aug. 2019
  • “Selecting Superluminous Supernovae from Transient Surveys with Machine Learning”
  • Led to a refereed publication and a Python package with student as second author
  • Worster Fellowship, UC Santa Barbara Jun.–Aug. 2016
  • “Optical Follow-Up of Gravitational Waves”
  • Led to a widely-used Python package with student as first author
  • Pioneers in Engineering, UC Berkeley Feb.–Apr. 2011 & 2012
  • Mentor for a robotics team of Bay Area high school students
Outreach
  • AAS Astronomy Ambassador Jan. 2018–present
  • Attended professional development workshop for effective communication with the public
  • Frequent presenter at various nonspecialist organizations
    • K–12 students: Santa Barbara High School, Thacher School, Youth Astro Net
    • Community colleges: Pima Community College, Santa Barbara Community College
    • Membership organizations: Beacon Hill Seminars, Orange County Astronomers
    • General public: Astronomy on Tap Santa Barbara, Space Drafts
  • Astronomy on Tap Boston Apr. 2019–Mar. 2020
  • Free, monthly, public astronomy presentations in the greater Boston area
  • One of four main organizers, negotiated venues, invited speakers, organized logistics
  • Astronomy on Tap Santa Barbara Mar. 2016–Jun. 2018
  • Free, monthly, public astronomy presentations in a bar in downtown Santa Barbara
  • Frequent host and astro news presenter, gave feedback during rehearsals
  • UCSB Physics Circus Sep. 2013–Jun. 2018
  • Interactive physics demonstrations for local elementary and middle schools
  • Won the 2014 Physics Circus Award in honor of outstanding and dedicated service
Software
  • Light Curve Fitting, Author 1 of 4 DOIdoi:10.5281/zenodo.2639463
  • Tools to fit analytical models to light curves of astronomical transients
Presentations
Invited Talks
  1. Special Session on SN 2023ixf, 243rd Meeting of the American Astronomical Society Jan. 2024
  2. Observing in the Big Data Era, 243rd Meeting of the American Astronomical Society Jan. 2024
  3. Windows on the Universe, NSF's National Optical/Infrared Astronomy Laboratory Oct. 2023
  4. Arcus Community Science Meeting, Center for Astrophysics | Harvard & Smithsonian May 2023
  5. Interacting Supernovae, Munich Institute for Astro-, Particle, and BioPhysics Feb. 2023
  6. Panel on Large Alert Streams, Gravitational Wave Physics and Astronomy Workshop Dec. 2022
  7. High Energy Astrophysics Seminar, Center for Astrophysics | Harvard & Smithsonian Sep. 2022
  8. Astronomy Seminar, Texas A&M University Nov. 2021
  9. Friday Lunch Astrophysics Seminar, NSF's National Optical/Infrared Astronomy Laboratory Oct. 2021
  10. Lunch Seminar, Carnegie Observatories Jan. 2021
  11. Cosmology Seminar, University of California, Davis Oct. 2020
  12. Astronomy Seminar, Michigan State University Oct. 2020
  13. Supernova Workshop, IAU Symposium 339 Nov. 2017
Contributed Talks
  1. Hot-wiring the Transient Universe VII, University of Toronto May 2024
  2. 243rd Meeting, American Astronomical Society Jan. 2024
  3. Massive Stars Near and Far, IAU Symposium 361 May 2022
  4. SuperVirtual: From Common to Exotic Transients, online Nov. 2021
  5. Petabytes to Science III, Association of Universities for Research in Astronomy Nov. 2019
  6. Hot-wiring the Transient Universe VI, Northwestern University Aug. 2019
  7. High Energy Astrophysics Seminar, Center for Astrophysics | Harvard & Smithsonian Mar. 2019
  8. Observational Astronomy Meeting, Northwestern University Nov. 2018
  9. Cosmology Seminar, University of California, Davis Mar. 2018
  10. 231st Meeting, American Astronomical Society Jan. 2018
  11. Southern Horizons in Time-Domain Astronomy, IAU Symposium 339 Nov. 2017
  12. Generation-GW: Diving into Gravitational Waves, University of the Virgin Islands Jun. 2017
  13. 229th Meeting, American Astronomical Society Jan. 2017
  14. Supernovae Through the Ages, Millenium Institute of Astrophysics Aug. 2016
  15. 227th Meeting, American Astronomical Society Jan. 2016
  16. Hot-wiring the Transient Universe IV, Las Cumbres Observatory May 2015
Publications
*undergraduate under my supervision
First Author
  1. G. Hosseinzadeh, K. Paterson, et al. 2024, “SAGUARO: Time-domain Infrastructure for the Fourth Gravitational-wave Observing Run and Beyond,” ApJ, 964, 35
  2. G. Hosseinzadeh, J. Farah, et al. 2023, “Shock Cooling and Possible Precursor Emission in the Early Light Curve of the Type II SN 2023ixf,” ApJL, 953, L16
  3. G. Hosseinzadeh, D. J. Sand, et al. 2023, “The Early Light Curve of SN 2023bee: Constraining Type Ia Supernova Progenitors the Apian Way,” ApJL, 953, L15
  4. G. Hosseinzadeh, D. J. Sand, et al. 2023, “JWST Imaging of the Cartwheel Galaxy Reveals Dust Associated with SN 2021afdx,” ApJL, 942, L18
  5. G. Hosseinzadeh, C. D. Kilpatrick, et al. 2022, “Weak Mass Loss from the Red Supergiant Progenitor of the Type II SN 2021yja,” ApJ, 935, 31
  6. G. Hosseinzadeh, D. J. Sand, et al. 2022, “Constraining the Progenitor System of the Type Ia Supernova 2021aefx,” ApJL, 933, L45
  7. G. Hosseinzadeh, E. Berger, et al. 2022, “Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae,” ApJ, 933, 14
  8. G. Hosseinzadeh, F. Dauphin*, et al. 2020, “Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot,” ApJ, 905, 93
  9. G. Hosseinzadeh, P. S. Cowperthwaite, et al. 2019, “Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR,” ApJL, 880, L4
  10. G. Hosseinzadeh, C. McCully, et al. 2019, “Type Ibn Supernovae May not all Come from Massive Stars,” ApJL, 871, L9
  11. G. Hosseinzadeh, S. Valenti, et al. 2018, “Short-lived Circumstellar Interaction in the Low-luminosity Type IIP SN 2016bkv,” ApJ, 861, 63
  12. G. Hosseinzadeh, D. J. Sand, et al. 2017, “Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor,” ApJL, 845, L11
  13. G. Hosseinzadeh, I. Arcavi, et al. 2017, “Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light,” ApJ, 836, 158
Major Contribution
  1. E. R. Beasor, G. Hosseinzadeh, et al. 2024, “JWST Reveals a Luminous Infrared Source at the Position of the Failed Supernova Candidate N6946-BH1,” ApJ, 964, 171
  2. B. Hsu*, G. Hosseinzadeh, et al. 2022, “Photometrically Classified Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey: A Case Study for Science with Machine-learning-based Classification,” ApJ, 937, 13
  3. K. Gill, G. Hosseinzadeh, et al. 2022, “Constraining the Time of Gravitational-wave Emission from Core-collapse Supernovae,” ApJ, 931, 159
  4. B. Hsu*, G. Hosseinzadeh, & E. Berger 2021, “Magnetar Models of Superluminous Supernovae from the Dark Energy Survey: Exploring Redshift Evolution,” ApJ, 921, 180
  5. V. A. Villar, G. Hosseinzadeh, et al. 2020, “SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae,” ApJ, 905, 94
  6. S. Gomez, G. Hosseinzadeh, et al. 2019, “A Galaxy-targeted Search for the Optical Counterpart of the Candidate NS-BH Merger S190814bv with Magellan,” ApJL, 884, L55
  7. I. Arcavi, G. Hosseinzadeh, et al. 2017, “Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger,” Natur, 551, 64
  8. I. Arcavi, G. Hosseinzadeh, et al. 2017, “Constraints on the Progenitor of SN 2016gkg from Its Shock-cooling Light Curve,” ApJL, 837, L2
Collaboration
  1. M. Shrestha et al. 2024, “Extended Shock Breakout and Early Circumstellar Interaction in SN 2024ggi,” ApJL, 972, L15
  2. B. Hsu et al. 2024, “One Year of SN 2023ixf: Breaking Through the Degenerate Parameter Space in Light-Curve Models with Pulsating Progenitors,” arXiv:2408.07874
  3. K. A. Bostroem et al. 2024, “Circumstellar Interaction in the Ultraviolet Spectra of SN 2023ixf 14-66 Days After Explosion,” arXiv:2408.03993
  4. N. Meza-Retamal et al. 2024, “Circumstellar Interaction Signatures in the Low-luminosity Type II SN 2021gmj,” ApJ, 971, 141
  5. W. V. Jacobson-Galán et al. 2024, “Final Moments. II. Observational Properties and Physical Modeling of Circumstellar-material-interacting Type II Supernovae,” ApJ, 970, 189
  6. S. Gomez et al. 2024, “The Type I Superluminous Supernova Catalog I: Light Curve Properties, Models, and Catalog Description,” arXiv:2407.07946
  7. M. Newsome et al. 2024, “Mapping the Inner 0.1 pc of a Supermassive Black Hole Environment with the Tidal Disruption Event and Extreme Coronal Line Emitter AT 2022upj,” arXiv:2406.11972
  8. Q. Wang et al. 2024, “A low-mass helium star progenitor model for the Type Ibn SN 2020nxt,” MNRAS, 530, 3906
  9. Y. Dong et al. 2024, “SN2023fyq: A Type Ibn Supernova With Long-standing Precursor Activity Due to Binary Interaction,” arXiv:2405.04583
  10. L. A. Kwok et al. 2024, “Ground-based and JWST Observations of SN 2022pul. II. Evidence from Nebular Spectroscopy for a Violent Merger in a Peculiar Type Ia Supernova,” ApJ, 966, 135
  11. N. Dukiya et al. 2024, “Probing the Circumstellar Environment of highly luminous type IIn SN ASASSN-14il,” arXiv:2404.04235
  12. J. E. Andrews et al. 2024, “SN 2022jox: An Extraordinarily Ordinary Type II SN with Flash Spectroscopy,” ApJ, 965, 85
  13. E. Padilla Gonzalez et al. 2024, “SN 2022joj: A Potential Double Detonation with a Thin Helium Shell,” ApJ, 964, 196
  14. K. M. de Soto et al. 2024, “Superphot+: Realtime Fitting and Classification of Supernova Light Curves,” arXiv:2403.07975
  15. M. Shrestha et al. 2024, “Evidence of Weak Circumstellar Medium Interaction in the Type II SN 2023axu,” ApJ, 961, 247
  16. M. R. Siebert et al. 2024, “Ground-based and JWST Observations of SN 2022pul. I. Unusual Signatures of Carbon, Oxygen, and Circumstellar Interaction in a Peculiar Type Ia Supernova,” ApJ, 960, 88
  17. J. Pearson et al. 2024, “Strong Carbon Features and a Red Early Color in the Underluminous Type Ia SN 2022xkq,” ApJ, 960, 29
  18. O. Graur et al. 2023, “No plateau observed in late-time near-infrared observations of the underluminous Type Ia supernova 2021qvv,” MNRAS, 526, 2977
  19. Y. Dong et al. 2023, “A Comprehensive Optical Search for Pre-explosion Outbursts from the Quiescent Progenitor of SN 2023ixf,” ApJ, 957, 28
  20. K. A. Bostroem et al. 2023, “Early Spectroscopy and Dense Circumstellar Medium Interaction in SN 2023ixf,” ApJL, 956, L5
  21. N. Smith et al. 2023, “High-resolution Spectroscopy of SN 2023ixf's First Week: Engulfing the Asymmetric Circumstellar Material,” ApJ, 956, 46
  22. Y. Dong et al. 2023, “SN 2022crv: IIb, Or Not IIb: That is the Question,” arXiv:2309.09433
  23. S. D. Van Dyk et al. 2023, “Identifying the SN 2022acko progenitor with JWST,” MNRAS, 524, 2186
  24. D. Hiramatsu et al. 2023, “From Discovery to the First Month of the Type II Supernova 2023ixf: High and Variable Mass Loss in the Final Year before Explosion,” ApJL, 955, L8
  25. K. A. Bostroem et al. 2023, “SN 2022acko: The First Early Far-ultraviolet Spectra of a Type IIP Supernova,” ApJL, 953, L18
  26. L. Makrygianni et al. 2023, “AT 2021loi: A Bowen Fluorescence Flare with a Rebrightening Episode Occurring in a Previously Known AGN,” ApJ, 953, 32
  27. J. E. Jencson et al. 2023, “A Luminous Red Supergiant and Dusty Long-period Variable Progenitor for SN 2023ixf,” ApJL, 952, L30
  28. Y. Camacho-Neves et al. 2023, “Over 500 Days in the Life of the Photosphere of the Type Iax Supernova SN 2014dt,” ApJ, 951, 67
  29. Y. Li et al. 2023, “A comparative analysis of type Ia supernovae 2018xx and 2019gbx,” A&A, 675, A73
  30. S. Gomez et al. 2023, “The First Two Years of FLEET: An Active Search for Superluminous Supernovae,” ApJ, 949, 114
  31. M. Shrestha et al. 2023, “Limit on Supernova Emission in the Brightest Gamma-Ray Burst, GRB 221009A,” ApJL, 946, L25
  32. T. Ben-Ami et al. 2023, “The Type Ibn Supernova 2019kbj: Indications for Diversity in Type Ibn Supernova Progenitors,” ApJ, 946, 30
  33. Y. Q. Ni et al. 2023, “The Origin and Evolution of the Normal Type Ia SN 2018aoz with Infant-phase Reddening and Excess Emission,” ApJ, 946, 7
  34. J. Pearson et al. 2023, “Circumstellar Medium Interaction in SN 2018lab, A Low-luminosity Type IIP Supernova Observed with TESS,” ApJ, 945, 107
  35. B. Ailawadhi et al. 2023, “Photometric and spectroscopic analysis of the Type II SN 2020jfo with a short plateau,” MNRAS, 519, 248
  36. L. A. Kwok et al. 2023, “A JWST Near- and Mid-infrared Nebular Spectrum of the Type Ia Supernova 2021aefx,” ApJL, 944, L3
  37. S. Gomez et al. 2022, “Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae,” ApJ, 941, 107
  38. J. Yang et al. 2022, “Using 1991T/1999aa-like Type Ia Supernovae as Standardizable Candles,” ApJ, 938, 83
  39. C. Pellegrino et al. 2022, “The Diverse Properties of Type Icn Supernovae Point to Multiple Progenitor Channels,” ApJ, 938, 73
  40. J. E. Andrews et al. 2022, “High-Cadence TESS and Ground-based Data of SN 2019esa, the Less Energetic Sibling of SN 2006gy,” ApJ, 938, 19
  41. J. Burke et al. 2022, “Companion Shocking Fits to the 2018 ZTF Sample of SNe Ia Are Consistent with Single-Degenerate Progenitor Systems,” arXiv:2208.11201
  42. Astropy Collaboration 2022, “The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package,” ApJ, 935, 167
  43. Y. Dong et al. 2022, “SN 2016dsg: A Thermonuclear Explosion Involving a Thick Helium Shell,” ApJ, 934, 102
  44. J. Burke et al. 2022, “Early Lightcurves of Type Ia Supernovae are Consistent with Nondegenerate Progenitor Companions,” arXiv:2207.07681
  45. S. J. Brennan et al. 2022, “Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr),” MNRAS, 513, 5666
  46. S. J. Brennan et al. 2022, “Photometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr),” MNRAS, 513, 5642
  47. A. Fiore et al. 2022, “Close, bright, and boxy: the superluminous SN 2018hti,” MNRAS, 512, 4484
  48. Y. Yin et al. 2022, “Optical Observations and Modeling of the Superluminous Supernova 2018lfe,” ApJ, 931, 32
  49. A. Gangopadhyay et al. 2022, “Evolution of a Peculiar Type Ibn Supernova SN 2019wep,” ApJ, 930, 127
  50. M. L. Graham et al. 2022, “Nebular-phase spectra of Type Ia supernovae from the Las Cumbres Observatory Global Supernova Project,” MNRAS, 511, 3682
  51. A. Hajela et al. 2022, “Evidence for X-Ray Emission in Excess to the Jet-afterglow Decay 3.5 yr after the Binary Neutron Star Merger GW 170817: A New Emission Component,” ApJL, 927, L17
  52. J. C. Rastinejad et al. 2022, “A Systematic Exploration of Kilonova Candidates from Neutron Star Mergers during the Third Gravitational-wave Observing Run,” ApJ, 927, 50
  53. Y. Q. Ni et al. 2022, “Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova,” NatAs, 6, 568
  54. C. Pellegrino et al. 2022, “Circumstellar Interaction Powers the Light Curves of Luminous Rapidly Evolving Optical Transients,” ApJ, 926, 125
  55. C. McCully et al. 2022, “Still Brighter than Pre-explosion, SN 2012Z Did Not Disappear: Comparing Hubble Space Telescope Observations a Decade Apart,” ApJ, 925, 138
  56. J. Johansson et al. 2021, “Near-infrared Supernova Ia Distances: Host Galaxy Extinction and Mass-step Corrections Revisited,” ApJ, 923, 237
  57. Q. Wang et al. 2021, “SN 2018agk: A Prototypical Type Ia Supernova with a Smooth Power-law Rise in Kepler (K2),” ApJ, 923, 167
  58. P. K. Blanchard et al. 2021, “Late-time Hubble Space Telescope Observations of a Hydrogen-poor Superluminous Supernova Reveal the Power-law Decline of a Magnetar Central Engine,” ApJ, 921, 64
  59. X. Zeng et al. 2021, “SN 2017fgc: A Fast-expanding Type Ia Supernova Exploded in Massive Shell Galaxy NGC 474,” ApJ, 919, 49
  60. S. Schulze et al. 2021, “The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae,” ApJS, 255, 29
  61. V. A. Villar et al. 2021, “A Deep-learning Approach for Live Anomaly Detection of Extragalactic Transients,” ApJS, 255, 24
  62. D. Hiramatsu et al. 2021, “The electron-capture origin of supernova 2018zd,” NatAs, 5, 903
  63. S. Gomez et al. 2021, “The Luminous and Double-peaked Type Ic Supernova 2019stc: Evidence for Multiple Energy Sources,” ApJ, 913, 143
  64. D. Hiramatsu et al. 2021, “Luminous Type II Short-Plateau Supernovae 2006Y, 2006ai, and 2016egz: A Transitional Class from Stripped Massive Red Supergiants,” ApJ, 913, 55
  65. T. Eftekhari et al. 2021, “Late-time Radio and Millimeter Observations of Superluminous Supernovae and Long Gamma-Ray Bursts: Implications for Central Engines, Fast Radio Bursts, and Obscured Star Formation,” ApJ, 912, 21
  66. A. Fiore et al. 2021, “SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail,” MNRAS, 502, 2120
  67. D. Xiang et al. 2021, “The Peculiar Transient AT2018cow: A Possible Origin of a Type Ibn/IIn Supernova,” ApJ, 910, 42
  68. X. Zeng et al. 2021, “SN 2017hpa: A Nearby Carbon-rich Type Ia Supernova with a Large Velocity Gradient,” ApJ, 909, 176
  69. M. Singh et al. 2021, “The Fast-evolving Type Ib Supernova SN 2015dj in NGC 7371,” ApJ, 909, 100
  70. W. V. Jacobson-Galán et al. 2021, “Late-time Observations of Calcium-rich Transient SN 2019ehk Reveal a Pure Radioactive Decay Power Source,” ApJL, 908, L32
  71. L. Tartaglia et al. 2021, “The Early Discovery of SN 2017ahn: Signatures of Persistent Interaction in a Fast-declining Type II Supernova,” ApJ, 907, 52
  72. Y. Dong et al. 2021, “Supernova 2018cuf: A Type IIP Supernova with a Slow Fall from Plateau,” ApJ, 906, 56
  73. C. P. Gutiérrez et al. 2020, “SN 2017ivv: two years of evolution of a transitional Type II supernova,” MNRAS, 499, 974
  74. M. Nicholl et al. 2020, “An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz,” MNRAS, 499, 482
  75. P. Short et al. 2020, “The tidal disruption event AT 2018hyz - I. Double-peaked emission lines and a flat Balmer decrement,” MNRAS, 498, 4119
  76. C. Bilinski et al. 2020, “SN 2014ab: an aspherical Type IIn supernova with low polarization,” MNRAS, 498, 3835
  77. S. Gomez et al. 2020, “FLEET: A Redshift-agnostic Machine Learning Pipeline to Rapidly Identify Hydrogen-poor Superluminous Supernovae,” ApJ, 904, 74
  78. Y. Yang et al. 2020, “The Young and Nearby Normal Type Ia Supernova 2018gv: UV-optical Observations and the Earliest Spectropolarimetry,” ApJ, 902, 46
  79. S. Gomez et al. 2020, “The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star,” MNRAS, 497, 1925
  80. T. E. Müller-Bravo et al. 2020, “The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio,” MNRAS, 497, 361
  81. W. V. Jacobson-Galán et al. 2020, “SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features,” ApJ, 898, 166
  82. K. A. Bostroem et al. 2020, “Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068,” ApJ, 895, 31
  83. T. M. Reynolds et al. 2020, “SN 2016gsd: an unusually luminous and linear Type II supernova with high velocities,” MNRAS, 493, 1761
  84. X. Han et al. 2020, “SN 2017cfd: A Normal Type Ia Supernova Discovered Very Young,” ApJ, 892, 142
  85. L. Tartaglia et al. 2020, “The long-lived Type IIn SN 2015da: Infrared echoes and strong interaction within an extended massive shell,” A&A, 635, A39
  86. A. Gangopadhyay et al. 2020, “Flash Ionization Signatures in the Type Ibn Supernova SN 2019uo,” ApJ, 889, 170
  87. R. Dastidar et al. 2019, “SN 2015an: a normal luminosity type II supernova with low expansion velocity at early phases,” MNRAS, 490, 1605
  88. A. Hajela et al. 2019, “Two Years of Nonthermal Emission from the Binary Neutron Star Merger GW170817: Rapid Fading of the Jet Afterglow and First Constraints on the Kilonova Fastest Ejecta,” ApJL, 886, L17
  89. J. E. Andrews et al. 2019, “SN 2017gmr: An Energetic Type II-P Supernova with Asymmetries,” ApJ, 885, 43
  90. L. Galbany et al. 2019, “Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type Ia supernova 2016hnk,” A&A, 630, A76
  91. B. Trakhtenbrot et al. 2019, “1ES 1927+654: An AGN Caught Changing Look on a Timescale of Months,” ApJ, 883, 94
  92. S. Gomez et al. 2019, “SN 2016iet: The Pulsational or Pair Instability Explosion of a Low-metallicity Massive CO Core Embedded in a Dense Hydrogen-poor Circumstellar Medium,” ApJ, 881, 87
  93. A. Pastorello et al. 2019, “A luminous stellar outburst during a long-lasting eruptive phase first, and then SN IIn 2018cnf,” A&A, 628, A93
  94. K. A. Bostroem et al. 2019, “Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz,” MNRAS, 485, 5120
  95. P. J. Brown et al. 2019, “Red and Reddened: Ultraviolet through Near-infrared Observations of Type Ia Supernova 2017erp,” ApJ, 877, 152
  96. S. J. Prentice et al. 2019, “Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?” MNRAS, 485, 1559
  97. T. Szalai et al. 2019, “The Type II-P Supernova 2017eaw: From Explosion to the Nebular Phase,” ApJ, 876, 19
  98. N. Blagorodnova et al. 2019, “The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution,” ApJ, 873, 92
  99. D. Xiang et al. 2019, “Observations of SN 2017ein Reveal Shock Breakout Emission and a Massive Progenitor Star for a Type Ic Supernova,” ApJ, 871, 176
  100. B. Trakhtenbrot et al. 2019, “A new class of flares from accreting supermassive black holes,” NatAs, 3, 242
  101. G. Dimitriadis et al. 2019, “K2 Observations of SN 2018oh Reveal a Two-component Rising Light Curve for a Type Ia Supernova,” ApJL, 870, L1
  102. W. Li et al. 2019, “Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations,” ApJ, 870, 12
  103. F. Taddia et al. 2019, “Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory,” A&A, 621, A71
  104. J. Sollerman et al. 2019, “Late-time observations of the extraordinary Type II supernova iPTF14hls,” A&A, 621, A30
  105. Y.‑Z. Cai et al. 2018, “AT 2017be - a new member of the class of intermediate-luminosity red transients,” MNRAS, 480, 3424
  106. J. P. Anderson et al. 2018, “A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features,” A&A, 620, A67
  107. C. Fremling et al. 2018, “Oxygen and helium in stripped-envelope supernovae,” A&A, 618, A37
  108. C. P. Gutiérrez et al. 2018, “Type II supernovae in low-luminosity host galaxies,” MNRAS, 479, 3232
  109. R. Dastidar et al. 2018, “SN 2015ba: a Type IIP supernova with a long plateau,” MNRAS, 479, 2421
  110. Astropy Collaboration 2018, “The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package,” AJ, 156, 123
  111. L. Li et al. 2018, “Optical observations of the 2002cx-like supernova 2014ek and characterizations of SNe Iax,” MNRAS, 478, 4575
  112. S. J. Prentice et al. 2018, “SN 2016coi/ASASSN-16fp: an example of residual helium in a typeIc supernova?” MNRAS, 478, 4162
  113. D. J. Sand et al. 2018, “Nebular Spectroscopy of the “Blue Bump” Type Ia Supernova 2017cbv,” ApJ, 863, 24
  114. K. Maguire et al. 2018, “Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties,” MNRAS, 477, 3567
  115. J. P. Anderson et al. 2018, “The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor,” NatAs, 2, 574
  116. F. Huang et al. 2018, “SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant,” MNRAS, 475, 3959
  117. C. Inserra et al. 2018, “On the nature of hydrogen-rich superluminous supernovae,” MNRAS, 475, 1046
  118. L. Tartaglia et al. 2018, “The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am,” ApJ, 853, 62
  119. S. Bose et al. 2018, “Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy,” ApJ, 853, 57
  120. A. A. Miller et al. 2018, “Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing,” ApJ, 852, 100
  121. M. L. Graham et al. 2017, “Nebular-phase spectra of nearby Type Ia Supernovae,” MNRAS, 472, 3437
  122. I. Arcavi et al. 2017, “Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star,” Natur, 551, 210
  123. LIGO/Virgo Collaboration et al. 2017, “A gravitational-wave standard siren measurement of the Hubble constant,” Natur, 551, 85
  124. IceCube Collaboration et al. 2017, “Multiwavelength follow-up of a rare IceCube neutrino multiplet,” A&A, 607, A115
  125. C. Barbarino et al. 2017, “LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova,” MNRAS, 471, 2463
  126. I. Arcavi et al. 2017, “Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory,” ApJL, 848, L33
  127. C. McCully et al. 2017, “The Rapid Reddening and Featureless Optical Spectra of the Optical Counterpart of GW170817, AT 2017gfo, during the First Four Days,” ApJL, 848, L32
  128. LIGO/Virgo Collaboration et al. 2017, “Multi-messenger Observations of a Binary Neutron Star Merger,” ApJL, 848, L12
  129. L. Yan et al. 2017, “Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory,” ApJ, 848, 6
  130. M. L. Graham et al. 2017, “Clues to the nature of SN 2009ip - II. The continuing photometric and spectroscopic evolution to 1000 days,” MNRAS, 469, 1559
  131. N. Blagorodnova et al. 2017, “iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy,” ApJ, 844, 46
  132. W. Zheng et al. 2017, “Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj,” ApJ, 841, 64
  133. R. Cartier et al. 2017, “Early observations of the nearby Type Ia supernova SN 2015F,” MNRAS, 464, 4476
  134. L. Tartaglia et al. 2017, “The Progenitor and Early Evolution of the Type IIb SN 2016gkg,” ApJL, 836, L12
  135. G. Leloudas et al. 2016, “The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole,” NatAs, 1, 0002
  136. M. J. Darnley et al. 2016, “M31N 2008-12a - The Remarkable Recurrent Nova in M31: Panchromatic Observations of the 2015 Eruption,” ApJ, 833, 149
  137. F. Huang et al. 2016, “Optical and Ultraviolet Observations of the Very Young Type IIP SN 2014cx in NGC 337,” ApJ, 832, 139
  138. G. Terreran et al. 2016, “The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase,” MNRAS, 462, 137
  139. M. Nicholl et al. 2016, “Superluminous Supernova SN 2015bn in the Nebular Phase: Evidence for the Engine-powered Explosion of a Stripped Massive Star,” ApJL, 828, L18
  140. S. Valenti et al. 2016, “The diversity of Type II supernova versus the similarity in their progenitors,” MNRAS, 459, 3939
  141. M. Nicholl et al. 2016, “SN 2015BN: A Detailed Multi-wavelength View of a Nearby Superluminous Supernova,” ApJ, 826, 39
  142. R. Ferretti et al. 2016, “Time-varying sodium absorption in the Type Ia supernova 2013gh,” A&A, 592, A40
  143. L. Tomasella et al. 2016, “Optical and near-infrared observations of SN 2014ck: an outlier among the Type Iax supernovae,” MNRAS, 459, 1018
  144. F. Taddia et al. 2016, “Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project,” A&A, 588, A5
  145. A. Pastorello et al. 2015, “Massive stars exploding in a He-rich circumstellar medium - VII. The metamorphosis of ASASSN-15ed from a narrow line Type Ibn to a normal Type Ib Supernova,” MNRAS, 453, 3649
Plus 295 astronomical telegrams and circulars (151 as first author).